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Symmetry breaking in one-dimensional diffusion

M. Gitterman
Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel

~Received 19 June 2000!

The mean free passage time for one-dimensional diffusion on a line segment under the influence of a
deterministic telegraph signal proves to be a nonmonotonic function of the signal rate~‘‘stochastic resonance’’!
if symmetry breaking takes place. The symmetry breaking may be expressed either in nonsymmetric boundary
conditions~one end absorbing and the other reflecting! or in a nonsymmetric telegraph signal. The latter case
is considered in detail. It turns out that the larger the asymmetry of a telegraph signal, the wider the range of
parameters for which a stochastic resonance occurs.

PACS number~s!: 02.50.2r, 64.10.1h
o-
e

m
on
Al
by
ea
s
te
tim

-
ad
at

an
g
n

rt
in
t
e
ve
e
th

,
r

ab

ll
m
n
di

-
ir
m
ob
se
i

in
th

-
ther

ath

the
ab-
try
gu-
is

red
ng

gth

the

the
Stochastic resonance~SR! and related phenomena of res
nance activation, coherent stochastic resonance, etc. hav
cently received much attention@1#. All these phenomena
share the common property that an output signal or so
function of it exhibits nonmonotonic behavior as a functi
of some characteristics of noise or of a periodic signal.
though as a rule, SR occurs in nonlinear systems driven
random and a periodic force, it manifests itself in some lin
systems as well. A simple example of SR in linear system
that of one-dimensional diffusion on a segment termina
by one or two traps, where the mean free passage
~MFPT! to be trapped by the boundary~or boundaries! varies
nonmonotonically as a function of both the frequency@2# and
amplitude@3# of the periodic force. The characteristic fre
quency needed for ‘‘resonance’’ is supplied either by an
ditional sinusoidal or rectangular pulse signal or by the r
of additional~say, dichotomous! colored noise.

In spite of the serious effort made in the study of reson
phenomena in systems subject to the random force, the
bally necessary conditions for the occurrence of SR have
been identified. It becomes clear, however, that some so
‘‘symmetry breaking’’ is required in the dynamic system
order for it to exhibit SR. We use a linear system to illustra
the importance of symmetry breaking, starting from symm
ric and nonsymmetric boundary conditions. If a diffusi
particle is exposed to dichotomous noise, the dependenc
the MFPT on the noise rate remains monotonic if bo
boundaries are absorbing@4#, and exhibits nonmonotonic
resonance behavior when the ‘‘symmetry’’ of the bounda
conditions is broken, namely, one of the boundaries is
sorbing and the other reflecting@5#. The same effect exists in
the well-known problem of jumps in a linear double-we
potential when the slope of the potential fluctuates rando
between two values at a rateg. ~These two problems are, i
fact, completely isomorphic being described by the same
ferential equations.! It turns out @6# that the nonmonotonic
dependence of the MFPT ong exists only when the bound
ary conditions are different at the two end points. The th
example, which demonstrates the importance of the sym
try of the boundary conditions, is related to the same pr
lem of a one-dimensional diffusion. However, in this ca
the random dichotomous noise is replaced by the determ
istic rectangular telegraph signal. Again, the MFPT rema
a monotonic function of the rate of the telegraph signal if
PRE 621063-651X/2000/62~6!/8820~3!/$15.00
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two boundaries are absorbing@7#, and becomes nonmono
tonic when one of the boundaries is absorbing and the o
is reflecting@8#.

Changes in the boundary conditions are not the only p
to symmetry breaking. The conjecture was made@8# that the
nonmonotonic dependence of the MFPT on the rate of
deterministic telegraph signal may appear even for two
sorbing boundary conditions, provided that the symme
breaking occurs via the replacing of the symmetric rectan
lar signal by a nonsymmetric signal. It is the aim of th
paper to verify this conjecture.

The evolution of the one-dimensional system conside
in the overdamped regime is governed by the followi
Langevin equation:

dx

dt
5j~ t !1 f ~ t !, ~1!

wherej(t) is a zero-mean Gaussian white noise of stren
D, i.e., ^j(t)j(t1)&52Dd(t2t1), and f (t) is the nonsym-
metric telegraph signal,

f ~ t !5H v1 for t«@2nG,~2n11!G#

2v2 for t«@~2n11!G,~2n12!G#,
~2!

where G is the period of the telegraph signal andn
50,1,2, . . . . Therate ~frequency! of the signal is given by
v5(2G)21.

The Fokker-Planck equation that corresponds to
Langevin equation~1!,

]p1,2~x,t !

]t
52 f ~ t !

]p1,2~x,t !

]x
1D

]2p1,2~x,t !

]x2
~3!

subject to the initial conditionp1(x,t50ux0)5d(x2x0) and
to the absorbing boundary conditions at both ends of
interval @0,L#, p1,2(x50,t)5p1,2(x5L,t)50, has the well-
known solution of the form@9#

p1~x,t !5
2

L
expFv1~x2x0!

2D
2

v1
2t

4DG
3 (

n51

`

sin~bnx!sin~bnx0!exp~2Dbn
2t !, ~4!
8820 ©2000 The American Physical Society
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p2~x,t !5
2

L
expF2

v2~x2x0!

2D
2

v2
2t

4DG
3 (

n51

`

sin~bnx!sin~bnx0!exp~2Dbn
2t !,

wherebn5pn/L.
The probability density functionp(x,t) describes all

properties of the random processx(t) including the MFPT,
T. However, the standard formulaT5*0

`dt*0
Ldxp(x,t) @9#

becomes slightly more complicated because the genera
lution of our problem can be obtained by matching the so
tions ~4! at times t5kG, k50,1,2, . . . . The probability
Pk(x) that at t5kG, the system is found at positionsx,x
1dx is defined by the obvious recurrence relations

Pm11~x!5E
0

L

dyp1,2~x,Guy!Pm~y!, ~5!

where indices 1 and 2 are related tom52n and m52n
11, respectively. The initial conditionP0(y)5d(y2y0)
leads to

P1~y!5p1~y,Gux0!. ~6!

Then, one immediately obtains@10,7#,

T5 (
n51

` E
0

G

dtE
0

L

dxE
0

L

dy@p1~x,tuy!P2n~y!

1p2~x,tuy!P2n11~y!#. ~7!

Although Eqs.~4!–~7! define, in principle, the full solu-
tion of our problem, some approximate procedure has to
used. In order to find whetherT is a monotonic function of
v, we apply the following method@8#. First, we shall find the
exact limiting values ofT for zero and infinitev. Then, we
calculate some approximate asymptotic values ofT for small
v. If T approaches the largest~smallest! limit value from
above~below!, the nonmonotonic dependenceT(v) will be
the geometric necessity.

For v→`, the fast oscillating signal does not influen
the MFPT, which is defined only by pure diffusion, an
which turns out to be equal for two absorbing boundaries@9#

T~v→`!5
x0~L2x0!

2D
. ~8!
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-

e

For the opposite limit,v50, the MFPT for a system
driven by white noise and constant biasv1 is also well
known @9#,

T~v50!52
x0

v1
1

LF12expS 2
v1x0

D D G
v1F12expS 2

v1L

D D G . ~9!

The expression forT(v50) can also be obtained from
the general expression~7! with G5` by substituting Eqs.~4!
and ~5! into Eq. ~7!. This gives

T~v50!5 (
n51

` E
0

`

dtE
0

L

dxp1~x,tux0!

5
2D

L
expS 2

v1x0

2D D (
n51

`

sin~bnx0!

3

bnF12~21!nexpS v1L

2D D G
S Dbn

21
v1

2

4D D 2 . ~10!

When the latter result is compared with that of Eq.~8!, it
is apparent thatT(v50),T(v→`).

Turning now to the calculation of the small correction
v to Eq. ~9!, it must be emphasized that, after integrati
over t, the ratev[(2G)21 appears as strong exponenti
dependence, exp@2(Dbn

21v1
2/4D)/2v#. The latter allows us

to retain only then51 term in Eq.~7! which, after using Eq.
~6!, can be rewritten as

T~v→0!'E
0

G

dtE
0

L

dxp1~x,tux0!

1E
0

G

dtE
0

L

dxE
0

L

dyp2~x,tuy!p1~y,Gux0!.

~11!

For the same reason, it justified to retain only then51
term in thep1 function in Eq.~11!, although the sum enter
ing thep2 function has to be retained. On substituting Eq.~4!
into Eq. ~11!, one can rewrite the leading term in the latt
equation in the form
T~v→0!5
2

L
expS 2

v1x0

2D DexpS 2
v1

2L214p2D2

8DvL2 D sinS px0

L D F2

pF11expS 2
v1L

2L D G
LDS v1

2

4D2
1

p2

L2 D 2

1E
0

L

dy expS v1y

2D D sinS py

L D (
n51

`

sin~bny!

bnF12~21!nexpS 2
v2L

2D D G
S Dbn

21
v2

2

4D D 2

2D

L
expS v2y

2D D G . ~12!

There is no need to calculate the sum overn in Eq. ~12! since the same sum—withv1 replaced by2v2—appears in Eq.
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~10!, and one can replace this sum by the equivalent expression from Eq.~9!. Equation ~12! then contains only trivial
integrations. Performing the simple algebra, yields

T~v→0!5

32pL2D2S 11
v1

v2
D

v1
2L214p2D2

expF2
v1x0

2D
2

v1
2L214p2D2

8DL2v
GsinS px0

L D

3H v2LF11expF ~v112v2!L

2D G
FexpS v2L

D D21GFv1
2L2S 11

2v2

v1
D 2

14p2D2G 2

DF11expS v1L

2D D G
v1

2L214p2D2 J . ~13!

From the outset one could use dimensionless units of length and time, which is equivalent to settingD5v151 in the final
Eq. ~13!. Introducing the parameter of nonsymmetry of the telegraph signal,z5v2 /v1, one can rewrite Eq.~13! as

T~v→0!5
32pL2~11z!

~L214p2!z
expF2

x0

2
2

L214p2

8L2v
GsinS px0

L D H LzF11expS ~112z!L

2 D G
@exp~Lz!21#@L2~112z!214p2#

2

F11expS L

2D G
L214p2

J .

~14!
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Since T(v50),T(v→`), nonmonotonic dependenc
T(v) will certainly occur whenT(v→0) is negative, where
the sign of the bracket in Eq.~14! completely determines th
sign of T(v→0). For z51 ~symmetric telegraph signal!
both this bracket andT(v→0) are positive, and there is n
geometric necessity for nonmonotonic changes ofT(v). It is
just this case that was considered previously@7#. However, a
simple analysis shows that the expression~14! becomes
negative forz>1.5, i.e., when the telegraph signal becom
sufficiently nonsymmetric. Moreover, the negative value
Eq. ~14! and, hence, the nonmonotonic behavior ofT(v),
occur only for not too large lengthL of the segment,L
,Lb , where Lb is some characteristic length which in
creases withz so that forz51.5, Lb55, and for z52.0,
Lb58, etc.

In conclusion, we found that the MFPT of a particle d
fusing on a segment and subject to the deterministic t
ev
s
f

e-

graph signal, remains the monotonic function of the rate o
signal if the system is ‘‘symmetric,’’ i.e., both boundary co
ditions are absorbing and the telegraph signal has a sym
ric rectangular form@7#. However, the violation of either o
these conditions~symmetry breaking! results in the appear
ance of nonmonotonic behavior~SR!. It was proved in the
previous work@8# that SR occurs for a symmetric signal wit
nonsymmetric end points~one absorbing and one reflecting!.
In this paper, we have shown that SR appears for symme
boundary conditions but with a nonsymmetric telegraph s
nal.
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