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Symmetry breaking in one-dimensional diffusion
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The mean free passage time for one-dimensional diffusion on a line segment under the influence of a
deterministic telegraph signal proves to be a nonmonotonic function of the signélsimehastic resonance”
if symmetry breaking takes place. The symmetry breaking may be expressed either in nonsymmetric boundary
conditions(one end absorbing and the other reflectiogin a nonsymmetric telegraph signal. The latter case
is considered in detail. It turns out that the larger the asymmetry of a telegraph signal, the wider the range of
parameters for which a stochastic resonance occurs.

PACS numbes): 02.50—r, 64.10+h

Stochastic resonan¢€R) and related phenomena of reso- two boundaries are absorbih@], and becomes nonmono-
nance activation, coherent stochastic resonance, etc. have tenic when one of the boundaries is absorbing and the other
cently received much attentiofil]. All these phenomena is reflecting[8].
share the common property that an output signal or some Changes in the boundary conditions are not the only path
function of it exhibits nonmonotonic behavior as a functionto symmetry breaking. The conjecture was mgglethat the
of some characteristics of noise or of a periodic signal. Al-nonmonotonic dependence of the MFPT on the rate of the
though as a rule, SR occurs in nonlinear systems driven by @eterministic telegraph signal may appear even for two ab-

random and a periodic force, it manifests itself in some lineagC"Ping boundary conditions, provided that the symmetry

systems as well. A simple example of SR in linear systems i2reaking occurs via the replacing of the symmetric rectangu-
r signal by a nonsymmetric signal. It is the aim of this

that of one-dimensional diffusion on a segment terminate : . :
aper to verify this conjecture.

ne or two tr where the mean fr im ) ; . .
by one or two traps, ere the mean free passage t : The evolution of the one-dimensional system considered

(MFPT) to be trapped by the boundafgr boundariesvaries . ; , i
nonmonotonically as a function of both the frequef2lyand Ta;hivﬁ]vgrduaa?gﬁq regime is governed by the following
amplitude[3] of the periodic force. The characteristic fre- g q ’
guency needed for “resonance” is supplied either by an ad- dx

ditional sinusoidal or rectangular pulse signal or by the rate a:f(t)'i-f(t), (D)
of additional(say, dichotomouscolored noise.

In spite of_the serious effqrt made in the study of reso”an\}vhereg(t) is a zero-mean Gaussian white noise of strength
phenomena in systems subject to the random force, the glcb’ i.e., (£(t)&(ty))=2D8(t—t,), and f(t) is the nonsym-
bally necessary conditions for the occurrence of SR have nghetric telegraph signal,

been identified. It becomes clear, however, that some sort of

“symmetry breaking” is required in the dynamic system in v, for te[2nI',(2n+1)I"]

order for it to exhibit SR. We use a linear system to illustrate f(t)= v,  for te[(2n+1)T.(2n+2)T'] ()

the importance of symmetry breaking, starting from symmet- 2 ' '

ric and nonsymmetric boundary conditions. If a diffusive \yhere I' is the period of the telegraph signal and
particle is exposed to dichotomous noise, the dependence efg 12 ... . Therate (frequency of the signal is given by
the MFPT on the noise rate remains monotonic if bothy=(2r) 1.

boundaries are absorbir[@], and exhibits nonmonotonic,  The Fokker-Planck equation that corresponds to the
resonance behavior when the “symmetry” of the boundarylangevin equatiorfl),
conditions is broken, namely, one of the boundaries is ab-

sorbing and the other reflectinf]. The same effect exists in apy AX,t)

the well-known problem of jumps in a linear double-well o~
potential when the slope of the potential fluctuates randomly

between two values at a raje (These two problems are, in
fact, completely isomorphic being described by the same dif
ferential equation$.It turns out[6] that the nonmonotonic
dependence of the MFPT opexists only when the bound-
ary conditions are different at the two end points. The third
example, which demonstrates the importance of the symme- 5 (X=Xo) 2t
try of the boundary conditions, is related to the same prob- (x )= _exr{vl—o_ i
lem of a one-dimensional diffusion. However, in this case L 2D 4b
the random dichotomous noise is replaced by the determin- o

istic rectangular telegraph signal. Again, the MFPT remains i ; Y

a monotonic function of the rate of the telegraph signal if the an’l S Aw)sint Bpxo)expt —DApt). - (4)

J A 32 t
P1AX )+D P1AX,t)
IX [9)(2

()

subject to the initial conditiop, (x,t=0[x,) = 8(x—X,) and

to the absorbing boundary conditions at both ends of the
interval [OL], py(x=0t)=pyx=L,t)=0, has the well-
known solution of the fornj9]
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2 va(X—Xo) U3 For the opposite limit,w=0, the MFPT for a system
pz(x,t)=Eex ~~%p 1D driven by white noise and constant biag is also well
known[9],
- v1X
X > sin(BaX)sin( BaXo)exp( — D B2t), L 1—exy{— EO)
"l T(w=0)=——2+ ()
U1 vil
where B,,= 7n/L. U l—exp{——)
The probability density functionp(x,t) describes all D
properties of the random proces§t) including the MFPT, The expression fof (w=0) can also be obtained from

T. However, the standard formulB=/gdt/cdxp(x,t) [9]  the general expressidi) with I' =2 by substituting Eqs(4)
becomes slightly more complicated because the general sand(5) into Eq. (7). This gives

lution of our problem can be obtained by matching the solu-
tions (4) at timest=kI', k=0,1,2.... The probability
Pi(x) that att=KI", the system is found at positionsx
+dx is defined by the obvious recurrence relations

o ” L
T(w=0)=>, dtf dxpy(X,t]Xo)
n=1J0 0

[’

L _ 2D U 1Xp 2 .
P 1(X)= fo dypyAX.T[Y)Pr(y), (5 = &P T 3p | &, SNBXo)
where indices 1 and 2 are related io=2n and m=2n N Uy
+1, respectively. The initial conditiorPy(y)=&(y—Yo) Bo| 1=(=1)"exp 55
leads to S _ (10)
v
P1(y)=pa(y.Txo). ©) (D s

Then, one immediately obtai40,7],
When the latter result is compared with that of E8), it

_ o (Tt L is apparent thal (w=0)<T(w— ).
T_zl fo dtjo dXJO dy[pa(x.t]y)Pan(y) Turning now to the calculation of the small correction in
o to Eqg. (9), it must be emphasized that, after integration
+P2(X,t|y)Ponsa(Y)]. (7)  overt, the ratew=(2I')"! appears as strong exponential

dependence, er(D,Bﬁ+vi/4D)/2w]. The latter allows us
to retain only then=1 term in Eq.(7) which, after using Eq.
), can be rewritten as

Although Egs.(4)—(7) define, in principle, the full solu-
tion of our problem, some approximate procedure has to b
used. In order to find whethdr is a monotonic function of - .
w, we apply the following methofB]. First, we shall find the T(w—>0)~J dtJ dxpy(X,t|Xo)
exact limiting values ofT for zero and infinitew. Then, we 0 0
calculate some approximate asymptotic value$ fdr small

L r L L
w. If T approaches the large&mallest limit value from +J dtf de dy po(x,t|y)p1(y.T[Xo).
above(below), the nonmonotonic dependentéw) will be o Jo Jo ’ ’
the geometric necessity. (11

For w—x, the fast oscillating signal does not influence
the MFPT, which is defined only by pure diffusion, and For the same reason, it justified to retain only thel
which turns out to be equal for two absorbing bound&i®ds term in thep, function in Eq.(11), although the sum enter-
ing thep, function has to be retained. On substituting Ej.
_ Xo(L=Xo) into Eq. (11), one can rewrite the leading term in the latter
T(w—0)= (8) A
2D equation in the form

1+ val
ex oL

T O . 2 U]_XO U%L2+47T2D2 7TXO &
T B T e R W L | Iy e
LD| —+—
4D% L2
o 1yexd 2
L viy) (Y| < B”{l v eXp( ZDHZD vy
+f0dyex 2D smT nz,l sin(Bny) v§ 5 Tex EYAE (12
= 2, V2
(D’B”+4D

There is no need to calculate the sum omén Eq. (12) since the same sum—withy, replaced by—v,—appears in Eq.
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(10), and one can replace this sum by the equivalent expression froni9EgEquation(12) then contains only trivial
integrations. Performing the simple algebra, yields

22 U1
327LD4| 1+ o b 1Xo viL2+4772D2 %o
T(0—=0)=—- 22 2D 2 s
viL“+47°D 8DL“w
(Ul+21)2)|_ UlL
y UZL l+eX[{T Dl1+ex E (13)
UL 20,12 T T 22 212
ex;{%)—l vil? 1+v—2 +4772D2} vil"+4m°D
1

From the outset one could use dimensionless units of length and time, which is equivalent toBsetting 1 in the final
Eq. (13). Introducing the parameter of nonsymmetry of the telegraph sigral, /v, one can rewrite Eq.13) as

1 (1+2z)L 1 L
+ex % +ex 5

=) N .
L/ [exp(Lz)—1][L%(1+22)%+47?] L2+ 472

327L%(1+2) Xo L2+4m?
T(w—0)=————exg — > ————
(L?+47%)z 2 8L%

(14)

Since T(w=0)<T(w—«), nonmonotonic dependence graph signal, remains the monotonic function of the rate of a
T(w) will certainly occur whenl (w— 0) is negative, where signal if the system is “symmetric,” i.e., both boundary con-
the sign of the bracket in Eq14) completely determines the ditions are absorbing and the telegraph signal has a symmet-
sign of T(w—0). For z=1 (symmetric telegraph signal ric rectangular forn{7]. However, the violation of either of
both this bracket and@(w—0) are positive, and there is no these conditiongsymmetry breakingresults in the appear-
geometric necessity for nonmonotonic change$(@$). Itis  ance of nonmonotonic behavi¢8R). It was proved in the
just this case that was considered previo(igly However, a  previous worK 8] that SR occurs for a symmetric signal with
simple analysis shows that the expressidd) becomes nonsymmetric end poin{®ne absorbing and one reflecting
negative forz=1.5, i.e., when the telegraph signal becomesln this paper, we have shown that SR appears for symmetric
sufficiently nonsymmetric. Moreover, the negative value ofboundary conditions but with a nonsymmetric telegraph sig-
Eg. (14) and, hence, the nonmonotonic behaviorTgiw),  nal.
occur only for not too large length of the segmentL
<L,, where L, is some characteristic length which in-
creases withz so that forz=1.5, L,=5, and forz=2.0,

L,=8, etc. | am grateful to the Physics Department of New York

In conclusion, we found that the MFPT of a particle dif- University for their hospitality during my stay at NYU, dur-
fusing on a segment and subject to the deterministic teleing which this work was done.
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